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Abstract

We have used Monte Carlo simulation and the Gibbs—Duhem integration technique to calculate temperature—
composition and pressure—temperature phase diagrams for binary Lennard—Jones mixtures. We systematically
explore Lennard-Jones parameter space to demonstrate how the features of these phase diagrams change as
function of diameter ratio, well-depth ratio, binary interaction parameter, and pressure. We find a number of cases
in which the vapor-liquid and liquid—liquid equilibria become metastable with respect to the solid—liquid and
solid—vapor equilibria. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The phase equilibria displayed by binary mixtures has intrigued scientists and engineers for decades.
Many investigators have predicted phase equilibria using a simple equation of state [1-6] or a combination
of an intermolecular potential model and simulation [7—11] in order to develop intuition about the overall
topography of phase diagrams for broad classes of substances. While most investigations of this nature
have focused exclusively on fluid phase equilibria, in real systems, the appearance of the solid phase often
has a big impact on the type of fluid phase equilibria observed because the solid phase interrupts the fluid
phase [12].

To obtain a better overall picture of mixture phase behavior, one must consider all types of equilibrium
between the vapor, liquid, and solid phases. In 1903, Smits [13] recognized that there are two categories of
solid—fluid behavior which are distinguished by whether or not the solid—liquid—vapor coexistence curve
interferes with the liquid—vapor critical curve. Within these two categories, Valyashko [14] identified 12
types of complete phase diagrams (i.e. showing equilibrium between solid, liquid, and vapor phases) for
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binary mixtures. Most of Valyashko’s types are based on experimental data for agueous salt systems
but some were deduced by making educated guesses about the transitions in the topography between ti
experimentally known types. Luks and coworkers [15,16] have calculated complete phase diagrams for
binary mixtures of solvent and a homologous series of solutes using the van der Waals equation of state
and a simple solid state fugacity model. Vlot et al. [17] used a combination of molecular simulation and
semi-empirical methods to calculate complete phase diagrams for symmetric (equal diameters;,;

equal attractive well-depths;; = &) binary Lennard—Jones mixtures.

In this paper, we briefly review the results [18—20] of an investigation aimed at learning how inter-
molecular forces affect the equilibria between solid, liquid, and vapor phases in binary mixtures. We have
calculated complete phase diagrams (i.e. showing equilibrium between solid, liquid, and vapor phases) for
binary Lennard—Jones mixtures using Monte Carlo simulation and the Gibbs—Duhem integration method.
This approach allows us to examine solid—liquid and solid—vapor phase behavior without resorting to a
separate model for the solid state. In the first study [18], we calculated temperature—compaosition phase
diagrams for 11 Lennard—Jones binary mixtures with diameter ratigs,, = 0.85—-1.0 and attractive
well-depth ratiose11/e00 = 0.625-1.6, at a reduced pressuré = Paf’l/sll = 0.002. Our focus in
this study was on understanding how the interference between vapor-liquid and solid-liquid equilibria
changes as a function of the molecular parameters. We also compared the resulting phase diagrams to tho
of real mixtures. In the second study [19], we calculated temperature—composition phase diagrams for
three Lennard—Jones binary mixtures with diameter eatidr,, = 0.85, well-depth ratia;1/e2, = 0.45,
and binary interaction paramete¥s = 1.0, 0.9, and 0.75, at reduced pressuté= 0.05. Our focus in
this study as on determining if and when regions of liquid—liquid coexistence are metastable with respect
to regions of solid—fluid coexistence. In the third study [20], we calculated temperature—composition
phase diagrams for six binary Lennard—Jones mixtures with diameter satibs, = 0.85, 0.9, and
0.95 and well-depth ratios;1/e2, = 0.45 and 1.6 at reduced pressui®s = 0.002-0.1. Our focus in
this study was on learning how the pressure—temperature projections of the resulting phase diagrams
particularly, the three-phase coexistence curves, shift with diameter ratio and well-depth ratio.

The remainder of this article is organized in the following manner. In Section 2, we give a short
description of the Gibbs—Duhem integration method used to calculate the complete phase diagrams. Ir
Section 3, we review selected results from the three studies mentioned above. We conclude in Section ¢
with a brief summary.

2. Method

The coexistence lines in all three studies were calculated using Gibbs—Duhem integration [21,22]. In
this method, phase coexistence is determined by integrating the Clapeyron differential equation. The
Clapeyron equation for equilibrium between two binary phasesn{y) at constant pressure is

9 i) ®
ds; &AL —&)(h* —h7)’

whereg is the reciprocal temperaturekT/ with kthe Boltzmann constant afidhe absolute temperature,

&, the fugacity fraction of species 2; = f»/ ) f;, with f; the fugacity of speciesin solution,x, the
mole fraction of species 2, ardis the molar enthalpy. The right-hand side of Eq. (1) can be integrated
numerically to find an equation fg# as a function ot if we have an initial condition describing the
temperature, fugacity fraction, enthalpies, and compositions at one coexistence point.
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In our work, a convenient choice for the initial coexistence condition is the vapor-liquid or solid—liquid
equilibrium condition for either of the pure components. The vapor—liquid and solid—liquid coexistence
data for a single component Lennard-Jones system have been obtained via Gibbs—Duhem integration
[22,23]. The slope of the integrand in Eq. (1) is undefined for pure comporignts{,x, = 0or& = 1,
x2 = 1), but it can be estimated using the limiting case of infinite dilution. This procedure is described
elsewhere [18,24,25] and will not be reviewed here.

The enthalpies and mole fractions needed for the integration of Eq. (1) were obtained by semi-grand
canonical Monte Carlo simulation [26] (constant temperature, pressure, total number of molecules, and
fugacity fraction) on the two phases. The simulations were run with a system size of 500 particles per
phase. An fcc crystalline structure was maintained in the solid phase by imposing a single occupancy
constraint [27,28] on the trial displacement of particles in the solid. The pressure was held constant and the
temperature and fugacity fraction were varied according to the values specified by the predictor—corrector
algorithm used to numerically integrate Eq. (1).

In some of the mixtures, we encountered occurrences of three-phase lines, such as is found for a
heteroazeotrope (liquid—liquid—vapor). In this case, two Gibbs—Duhem integrations were conducted,
each starting from the vapor—liquid coexistence condition of the pure comporerts)(andx, = 1).

At somex, (unknown at the commencement of the two integrations), the vapor phase coexistence lines
will cross, thus determining the temperature, fugacity fraction, and coexistence compositions of the three
coexisting phases: liquid(1), liquid(2), and vapor. The liquid phase mole fractions and enthalpies then
become the initial condition for the liquid—liquid coexistence curve found below the heteroazeotrope
temperature.

3. Results

We began by exploring the effect that changes in both molecular size and intermolecular attractions have
on the complete temperature—composition phase behavior of a Lennard—Jones mixture at a single pressur:
[18]. We calculated complete phase diagrams for binary Lennard—Jones mixtures with diameter ratios
o110 = 0.85-1.0 and attractive well-depth ratieg/eo, = 0.625-1.6, at a reduced pressuré =
Pofl/sn: 0.002 which is equivalent to atmospheric pressure for argon. The cross-species interaction
parameters were obtained from Lorentz—Berthelot combining rales= (011 + 022)/2 ande, =
(e11622) /2. We restricted ourselves to diameter ratios ranging from 0.85 to 1.0 because calculations on
binary hard sphere mixtures [29-32] have shown that the stable phase in this region is a substitutionally
disordered fcc solid solution (the two species pack onto the same fcc crystalline lattice and can substitute
for one another in any order on the lattice). At diameter ratios less than 0.85, the calculation is more
complex because several ordered crystalline phases are possible, necessitating the calculation of eacl
phase’s free energy to determine the most stable crystalline structure.

Fig. 1 shows the temperature—composition phase diagram calculated for the binary Lennard-Jones
mixture witho 11/09> = 0.90 ande11/e0> = 0.625, along with a not-to-scale schematic to illustrate the
features of the phase diagram more clearly. Vapor-liquid coexistence lines originate from pure component
2 (xp =1, T* = 1.157) and decrease in temperature with decreasing fugacity fragtidiquid—solid
coexistence lines originate from pure component2- 1, T* = 1.099) and decrease in temperature
with decreasing fugacity fractiofp. The vapor—liquid and liquid—solid curves meeffdt= 1.086 and
form a three-phase, vapor—liquid—solid equilibrium line. Vapor—solid coexistence lines originate from this
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Fig. 1. Temperature—composition phase diagram for a binary Lennard—Jones mixture with diameter ratio of 0.90 and a well-depth
ratio of 0.625 at a reduced pressurerdf= 0.002 [18]. (a) Phase diagram obtained via Gibbs—Duhem integration. The circles
represent data from the Gibbs—Duhem integration simulations. Error bars are shown when they are larger then the width of the
symbol. Lines are drawn through the points for clarity. (b) Schematic phase diagram corresponding to (a). The labels identifying
the phases present in each region are as follows: v (vapor), | (liquid), and s (fcc solid solution).

three-phase line and decrease in temperature with decreasing fugacity fraction. Vapor—liquid curves orig-
inate from pure component 1= 0, T7* = 0.732) and increase in temperature with increasing fugacity
fraction. The vapor—liquid and vapor—solid curves meef“at= 0.770 and form another three-phase,
vapor-liquid—solid equilibrium line. Liquid—solid coexistence lines originate from this three-phase line
and decrease in temperature with decreasing fugacity fragtima minimum melting point{; = 0.195,

T* = 0.665). The solid-liquid lines then increase in temperature with decreasing fugacity fragtion
until they reach the solid-liquid coexistence temperature for pure componentlQ, 7* = 0.687). A
miscible solid phase exists below the solid-liquid curves.

Schematic phase diagrams based on the simulation results for this study [18] are shown in Fig. 2. We
find that for well-depth ratios of unity (equal attractions among species), there is no interference between
the vapor-liquid and solid—liquid coexistence regions. As the well-depth ratio increases or decreases from
unity, the vapor-liquid and solid—liquid phase envelopes widen and interfere with each other leading to
a solid—vapor coexistence region. For all well-depth ratios and a diameter ratio of 0.95, the solid—liquid
lines have a shape characteristic of a solid solution (with or without a minimum melting temperature);
as the diameter ratio decreases the solid—liquid lines fall to lower temperatures until they eventually
drop below the solid—solid coexistence region, resulting in either a eutectic or peritectic three-phase
line.

There are many examples of real mixtures that display phase diagrams that are qualitatively simi-
lar to the phase diagrams for the Lennard—Jones binary mixtures shown in Fig. 2. The binary mixture
p-dichlorobenzengs-dibromobenzene [33-35] has a temperature—composition phase diagram like the
one calculated fas 11/025> = 0.95 ands11/622 = 0.625. The similarities between this real mixture and the
Lennard—Jones mixture can be explained by noting that palichlorobenzene angtdibromobenzene
are symmetric molecules and that they differ in size by approximately 6% along their longest linear dimen-
sion [36]. Other examples include: argon—krypton [37—39] resembling tfie,> = 0.90,£11/e2, = 1.0
mixture; water—sodium chloride, water—silver nitrate [40,41], and methmhexadecane [42] resembling
the o 11/o9o = 0.85, e11/e2, = 0.625 mixture; and iodine—sulfur [43] resembling te/oo, = 0.85,

811/822 = 0.625 mixture.
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Fig. 2. Schematic phase diagrams based on the simulation results obtained in [18]. The columns correspond to mixtures with
diameter ratios of 0.95, 0.9, and 0.85, and the rows correspond to mixtures with well-depth ratios of 1.6, 1.0, and 0.625. Heavy
lines correspond to the equilibrium curves calculated by the Gibbs—Duhem integration simulations [18]. Thinner lines represent
solid—solid coexistence curves that have been estimated using quasi-chemical theory arguments. Metastable coexistence curve:
are indicated with dashed lines.

Next we explored the effect that changes in the binary interaction parasagtan /(c11620)Y?, i.e.
deviations in the Lorentz—Berthelot combining rule, have on the complete phase behavior of a mixture
at constant pressure [19]. Complete diagrams were calculated for binary Lennard—Jones mixtures with
diameter ratiar 11/022 = 0.85, well-depth ratia11/e0 = 0.45, and binary interaction parametéis =
1.0,0.9,and0.75, atreduced pressre= 0.05. Forthe mixture witli;» = 1.0, we find a spindle-shaped
vapor-liquid coexistence region and a eutectic solid—liquid coexistence region separated by a completely
miscible liquid phase, similar to Fig. 2 (center, right). For the mixtures d4ith< 1, we find that the
vapor-liquid and solid—liquid coexistence regions interfere resulting in a vapor—solid coexistence region
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Fig. 3. Temperature—composition phase diagram for a binary Lennard—Jones mixture with diameter ratio of 0.85 and a well-depth
ratio of 0.45 at a reduced pressure®f= 0.05 [19]. (a) Phase diagram obtained via Gibbs—Duhem integration. The open circles
represent data from the Gibbs—Duhem integration simulations. Error bars are shown when they are larger then the width of the
symbol. Lines are drawn through the points for clarity. (b) Schematic phase diagram corresponding to (a). The labels identifying
the phases present in each region are as follows: v (vapor), | (liquiffcssolid solution rich in component 1), ang(écc solid

solution rich in component 2). (c) Phase diagram showing the metastable vapor-liquid and liquid-liquid equilibria along with the
equilibrium coexistence curves of (a). The open circles (equilibrium) and filled diamonds (metastable) represent data from the
Gibbs—Duhem integration simulations. The dashed line indicates the metastable heteroazeotrope. (d) Schematic phase diagra
corresponding to (c). The solid lines indicate the equilibrium coexistence curves and the dashed lines indicate the metastable
coexistence curves. The labels identifying the metastable phases are as follows: v (v&liqu)dirich in component 1), and

I, (liquid rich in component 2).

bounded above and below by solid-liquid—vapor coexistence lines. We also find that the mixtures with
812 < 1 have a region of liquid—liquid immiscibility that is metastable with respect to the solid—fluid
phase equilibria. These feature are illustrated in Fig. 3 which shows the temperature—composition phase
diagram calculated for the binary Lennard—Jones mixture wittlo,o, = 0.85, g11/e2, = 0.45, and

812 = 0.9. Both the equilibrium and the metastable coexistence curves are shown, along with not-to-scale
schematics.

We have also explored the effect that varying the pressure has on the complete phase behavior of a mix
ture [20]. Temperature—composition phase diagrams have been calculated for six binary Lennard—Jone
mixtures with diameter ratios11/05, = 0.85, 0.9, and 0.95 and well-depth ratiog/e;, = 0.45 and
1.6 at reduced pressurés = 0.002-0.1. In Fig. 4, the temperature—composition phase diagrams for
the binary Lennard—Jones mixture with ratog/oo, = 0.85 andeii/e» = 1.6 at reduced pressures
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Fig. 4. Temperature—composition phase diagrams for a binary Lennard—Jones mixture with diameter ratio of 0.85 and a well-depth
ratio of 1.6 at reduced pressures Bf = 0.002, 0.01, and 0.05 [20]. The left-hand column shows the curves obtained by
Gibbs—Duhem integration simulations; the right-hand column shows not-to-scale schematic phase diagrams corresponding to
the simulation results. The labels identifying the phases present in each region are as in Fig. 3.

P* =0.002,0.01, and 0.05 are shown along with not-to-scale schematig. At0.002 the vapor-liquid

and solid—liquid coexistence regions interfere. As pressure increases, the vapor-liquid coexistence region
first shifts to higher temperature®{ = 0.01) and then begins to disappe®*(= 0.05) as the pressure
becomes higher than the critical pressure of pure component 2. It is convenient to summarize these results
on a pressure—temperature projection that identifies the three-phase coexistence features of the mixture
(solid—liquid—vapor and solid—solid—liquid) in addition to the pure component vapor-liquid, solid—liquid,
and vapor—solid coexistence curves. The pressure—temperature projection for the binary Lennard—Jones
mixture with ratioss 11/02, = 0.85 ande11/e25 = 1.6 is shown in Fig. 5. The pure component coexistence

data (taken from the work of Kofke and coworkers [22,23]) are represented with solid lines. The eutectic
(s1s2l) and solid(1)-liquid—vapor ($g) temperatures determined from the simulations are shown by open
circles, with dot-dashed lines connecting the points to guide the eye. The eutgst)ddsus is relatively
independent of pressure. The solid(1)-liquid—vapg@gjdocus originates from the triple point of pure
component 1 and passes through a maximum pressuitée at 0.005. We anticipate that thelg locus
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Fig. 5. Pressure—temperature projection for a binary Lennard—Jones mixture with diameter ratio of 0.85 and a well-depth ratio
of 1.6. The open circles represent three-phase coexistence data from Gibbs—Duhem integration simulations. Dot-dashed line
are drawn through the simulation points as a guide to the eye. The remaining symbols are as follows: solid lines represent the
pure component vapor pressure and melting curves, asterisks denote pure component and mixture vapor—liquid critical points,
open triangles denote pure component triple points.

will terminate at the quadruple point6slg) of the mixture [44], which is belowP* = 0.002 (the lowest
pressure considered). Our estimate of the binary mixture critical poiRt at 0.05 is shown by an
asterisk.

Pressure—temperature projections have been calculated for the remaining five mixtures mentioned abov
in order to observe how the features on these phase diagrams change with variations in diameter ratic
o11/0 22 and well-depth ratie1/s2,. Highlights of these calculations (phase diagrams not shown) are the
following. We find that as the diameter ratio decreases, the maximum in the locus of solid—liquid—vapor
coexistence pressures decreases and the locus of solid(1)—solid(2)-liquid temperatures shifts from tem
peratures above the solid—liquid temperature of pure component 1 to temperatures below the solid—liquid
coexistence temperature of pure component 1. We find that as well-depth ratio decreases, the coexistenc
curves for pure component 2 shift from temperatures and pressures below those of pure component
to temperatures and pressures above those of pure component 1 and that the maximum in the locus c
solid—liquid—vapor coexistence pressures increases.

4, Summary

The Gibbs—Duhem integration technique was combined with semi-grand canonical Monte Carlo sim-
ulations to calculate temperature—composition and pressure—temperature phase diagrams for binar
Lennard—Jones mixtures. This approach allows us to examine solid—liquid and solid—vapor phase
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behavior of a mixture without resorting to a separate model for the solid state, thus, making it possi-
ble to classify phase diagrams based not only on fluid phase behavior, as was done by Van Konynenburg
and Scott, but also on solid phase behavior.
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